
 

 

Modeling Excavation Forces for Chain Driven Mechanisms with Buckets and Picks. M. C. Guadagno1, F. D. 
Gaertner2, and P. J. van Susante3. 1,2,3Dept. of Mechanical Engineering-Engineering Mechanics, Michigan 
Technological University 1400 Townsend Drive, Houghton, MI 49931 (contact: pjvansus@mtu.edu). 
 
 
Introduction:  A loose layer of regolith overburden is 
believed to exist within PSRs which was formed by 
repeated asteroid impacts with the lunar surface and 
desiccated by the gradual off-gassing of volatiles to 
space [1]. Beneath the top layers, water ice is theorized 
to exist in cemented aggregates formed by the same 
impact events. The subsurface deposits of hardened icy 
lunar regolith potentially have compressive strengths 
like that of concretes used on Earth [2].  
Chain driven mechanisms have proven to be an 
effective solution to excavating both overburden [3] and 
hardened material [4]. While trenchers have seen 
success in competitions and testing in relevant lunar 
environmental analogues [5][6], optimizing 
performance has largely been an empirical process 
using test data with force modeling focused on 
individual tools rather than an entire system.  
A computational excavation force model for chain 
driven systems is presented in the following abstract. 
Simultaneous force contributions from multiple bucket 
and pick style end effectors are accounted for in the 
model. These models and tests aim to ultimately support 
mission planners when evaluating the viability of chain-
driven excavation systems for lunar rovers. 
Methods: In the most basic configuration, a trencher 
consists of a motor attached to a sprocket that drives a 
chain connected to an idler, forming a geometric 
stadium shape. The chain may have various attached 
tools that perform a spectrum of functions between 
cutting (picks) and transportation (buckets). While 
capable of incorporating many tool geometries, layouts 
used by the PRIMROSE rover in the BTIL competition 
(Figure 1) [5] and a trencher developed by the PSTDL 
for excavation loose regolith in vacuum conditions [6] 
were selected to verify model accuracy with real-world 
data. 

 

Figure 1: The PRIMROSE rover excavation 
mechanism. Picks were used to break up hardened 

CLSM while blades were used to transport material to 
an internal hopper.  

 
Once the trencher geometry is established a position 
model for every end effector is generated. The position 
model accounts for the dynamics imparted onto the end 
effectors by both the motion of the chain and the 
translation and rotation of the entire excavation system. 
Position is solved iteratively in a set of parametric 
equations for each section of the tool path (Figure 2). 
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Figure 2: Output position plot of an example 4-pick 
trencher model (top) with corresponding changing 
position and angle variables versus time (below). 

 
Forces on point attack picks were initially modeled 
using the Goktan and Gunes model [7] while the 
Balovnev model [8] was used for buckets. Both methods 
use the position model for inputs to their respective 
equations.  
Simulations are run with the goal of understanding how 
various parameters affect cut depth, a value critical to 
both models due to an exponential relationship with 
output force. In addition to standard excavation 
parameters, cut depth on trenchers varies with the chain 
speed and the movement of the attached rover. 
 
Results & Discussion: Model development is still 
ongoing, but results are expected to show that 
excavation forces from picks in cemented icy regolith 
simulant will be orders of magnitude greater than those 
experienced by buckets for loose regolith overburden.  
While there are many factors which may affect the 
effective cutting depth of trenchers, there are just as 
many ways to control it. So long as the tip of the pick 
remains the first impact point, a rover can adjust the 
chain speed and forward velocity to change effective cut 
depth. Such changes in continuous excavation systems 
are relatively easy to make compared to discrete 
counterparts. 
 
Conclusion: In this abstract, a novel chain trencher 
excavation model which determines multiple pick and 
blade forces is shown. Initial results are promising and 
await validation from results produced by the force test 
stand at the PSTDL. 
Additional work includes further modularizing the 
software so that other users may apply this model to 
help size trenchers for their excavation needs.  
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